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The problem of Landau damping of longitudinal plasma oscillations is investigated by dividing
the plasma electrons into two groups. The first group is the main plasma and consists of all electrons
with velocities considerably different from the wave velocity while the second group, the resonant
electrons, consists of all electrons with velocities near the wave velocity. It is assumed that initially
the main plasma has a wave on it while the resonant particles are undisturbed. It is shown that
equating the gain in energy of the resonant particles to the loss in energy of the wave gives the correct
Landau damping. Only first-order quantities are used in the analysis so that particle trapping which
is a nonlinear effect is not involved. The validity of arguments which attribute Landau damping
to particle trapping is discussed. The breakdown of the linearized theory and the Galilean invariance

of the damping are also investigated.

INTRODUCTION

HE problem of longitudinal electron oscillations

of a plasma has been extensively treated in the
literature.'™® Many derivations of the phenomenon
of Landau damping have been given. Nevertheless
one still hears arguments about its reality. It is
the purpose of this paper to give a derivation of
Landau damping based on a physical model. While
nothing basically new is gained, the author feels
that some physical insight into the process involved
is obtained. In some respects the treatment presented
here is close to the discussion given by Bohm and
and Gross.? :

Landau damping . has its origin in the strong
interaction between a longitudinal plasma wave and
those particles whose velocities are nearly equal to
its phase velocity. It comes about because these
particles in general tend to pick up energy from the
wave when they are initially randomly phased with
respect to it. In order to compute this effect we will
proceed as follows. We divide the electrons into
two groups, the main plasma and the resonant
particles. The main plasma contains all the electrons
except those in a small interval 2 AV about the
wave velocity (see Fig. 1). Since the main plasma
has no particles traveling at the wave velocity V,,
there exist undamped waves of the main plasma
which have this velocity. We will assume that such
a wave has been set up in the main plasma. Due
to interaction of this wave with the resonant
particles there will be an exchange of energy between

1 L. Landau, J. Phys. (U.S.S.R.) 10, 25 (1946).
* N. G. Van Kamper, Physica 21, 949 (1955).
( 3 D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 and 1864
1949).
¢ R. W. Twiss, Phys. Rev. 88, 1392 (1952).
5 J. D. Jackson, J. Nuclear Energy 1, 171 (1960).

the wave and these particles. If the rate of change
of energy of the resonant particles is dW/dt, then
the rate of loss of energy by the wave to these
particles is —dW/dt. If we neglect other losses such
as those due to harmonic generation, then this
will be the total loss of energy by the wave. One
can show that the energy associated with harmonic
generation or second-order perturbation is fourth
order in the amplitude and can thus be neglected.
It will be shown shortly that the energy associated
with the first-order perturbation is conserved through
second order in the wave amplitude.

BASIC ASSUMPTIONS AND CALCULATIONS

We assume that the plasma is uniform and
infinite in extent. The ions are assumed to con-
stitute a fixed uniform neutralizing background.
Collisions between individual particles are neglected.

We will investigate only plane longitudinal waves
traveling in the z direction. Thus y and 2z motions
can be neglected. Let N(V) dV be the number of
electrons per unit volume whose z component of

Main Plasma
[ Resonant particles

Fia. 1. Division of the plasma into main plasma and resonant
particles.
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velocity lies between V and V 4+ dV when the
plasma is in the undisturbed state. Let v, (V, z, {)
and n, (V, z, §) dV be the perturbations in velocity
and number density for this group of particles.
The linearized equations of motion for v, and =,
are given by (1) and (2):

o (V, x, f) Ven(V,z,8)  —el,
at + 3z T om @
an,(V, z, t) V an,(V, x, t)+ Neévw(V,z, 0 - 0.
ot oz dz
@

.Here E, is the first-order self-consistent electric
field produced by all velocity groups and is given
by Poisson’s equation.

o8,

i —41refn1(V, z, 5 dV.

@)
The velocity V is to be considered constant in (1)
and (2).

The first-order quantities E,, n, and v, satisfy
an energy equation which we shall now derive.
It is closely related to the small-amplitude power
theorem used in theory of microwave tubes.®”’
Taking the time derivatives of (3) and making use
of (2) we find

—4re f dn, A%

at 63:

— dme f 2V + No)dv. @

Integrating over x yields (5) provided we assume
there is a place, say — «, where both J, and E,
vanish.

0B,/ot = dme [ @V + Noy dV = —dmjs.  (5)
From (5) it follows directly that the energy associ

ated with the first-order electric field satisfies the
conservation equation (6).

A(E?/8n)/0t = (6)

Now consider the kinetic energy of the particles up
to second order in the amplitude. It is given by (7):

_El'jl'

K, = im f AVING + 2N,V

+ 200,V +n, V> 4+ NV,  (7)

By taking the derivative of (7) with respect to ¢

8 W. H. Louisell and J. R, Pierce, Proc. Inst. Radio Engrs.
43, 425 (1955).
. TP. A Sturrock, Ann. Phys. (N. Y.) 4, 306 (1958).
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and making use of the equations of motion (1) and
(2), we find

6K1

_m 2¢E,
YR dV[ m (Nv, +n,V + NV)

2 0(n.vy)

avl
2N V s

-2V
280 padmy
- 3NV 9 Vax:l

= +E,-j + Ey-jo — %mfdvj—x [NV

+ 2Vn0, + SNV, + V] @®)

The first and second terms on the right-hand side
are the rate at which work is being done on the
first-order and zero-order currents. The integral on
the right-hand side represents a convection of
kinetic energy. If j, is zero the second term vanishes.
Also, E, will in general be made up of terms of
the form sin kx and cos kz and will thus average
to zero. We will assume this. Further we will assume
n, and v, are periodic so that integration of the
convective terms over a period gives zero. Thus,
integrating (8) over one period gives (9):

N (K = MEj) =~ e (B, (9)
Here the brackets ( ) indicate average values over
a period whose length is N\. The quantity

MK, + (1/87)(BR))

is the energy associated with the first~order quan-
tities, n,, v., and E, and is conserved.

Let us return now to the problem of Landau
damping and assume that the electric field has the
form (10)

This field is to be produced by a normal mode of
the main plasma. On substituting (10) in the equa~-
tions of motion, (1) and (2), we find that n, and v,
for the main plasma are given by (11) and (12).

n(x, t) = —;@%}Eﬁ cos (kx — wf) (11)
ny(z, t) = _5%1_\’_(_2’%%2 cos (kx — wi). (12)

Further, we assume that the electric field is produced
by the main plasma and that the resonant particles
make a negligible contribution to it. This is equiva-
lent to assuming small damping. On substitution



ON LANDAU DAMPING

of (10) and (12) in (3), one finds that « and k&
must satisfy the dispersion relation (13).

ané [ N(V)dV

N M

(13)
Here mp means the integral is to be taken only
over the main plasma. Since the resonant particles
have been cut out no problem with singular inte-
grals arises here.

We may now compute the wave energy. Equation
(14) gives its value per wavelength.

2 A
*E‘+—2’4f dxf av
0 mp

We = Tor

(N 4+ n)(V +v)” — NV (14)

Making use of expressions (11) and (12) for », and
v, we find for W,,

N Ei [1 + o j:,,,, [(V)w + kV) dV:l' (15)

Wo =3 8  — kV)?

Here f(V) is the normalized distribution function

v =xwm /[ Nwav, o
and w, is the plasma frequency,
ws = 4zé’ N(V)dV. 17

One can convert (15) into (18) by making use of
the dispersion relation (13).

W M £ (V) av
= g S = kv
Ry
=&/ U—cam @®
N = 2x/k.

We must find the rate of change of energy of the
resonant particle. Equations (11) and (12) are
solutions for n, and », for the resonant particles
as well as for the main plasma. However, they have
very large amplitude in the vicinity of the wave
velocity. Even if the linearized solutions were valid
in this region it would be difficult to set up such a
state due to the large amount of order required.
We may expect to set up a wave on the main plasma
where all particles are perturbed more or less equally,
but it would be beyond us to establish the large
perturbations of the resonant particles. We will
therefore assume that at ¢ equal to zero there is
no correlation between the resonant particles and
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the wave. Thus we will take n,(V), and v,(V) equal
to zero at ¢ equal zero.

To achieve these initial conditions we must add
solutions of the homogeneous equations of motion
[(1) and (2) with the right-hand side equal to zero}
to solutions (11) and (12). There are two such solu-
tions and they are given by Eqs. (19) and (20).

n = — Vi,

n, = [At + “;VA)—“‘] NVl — VH)  (19)

n =0, n, = n,(x — Vi). (20)

Here v,(x — Vi) and n,(x — Vi) are arbitrary
functions of x — V¢t and A is an arbitrary constant.
The prime indicates differentiation with respect to
(x — Vit). Adding solutions (19) and (20) to (11)
and (12), so as to satisfy the initial conditions leads
to (21) and (22) for the resonant particles.

_ eE,
" T T — kV)
-[cos (kx — wit) — cos k(z — V)] 21)
___eBkN(V)
T e — kV)
[eos (kx — wf) — cosk(x — V)
— (@ — kV)tsin k(zx — V). (22)

The last term in expression (22) grows with time.
It is due to the fact that a small velocity perturba-
tion at time ¢ = 0 will cause a bunching of a stream
which increases linearly with time due to the lack
of a constraining force.

If (22) is expanded about V = wk one finds (23).

n, = L[eEkN(V)E] cos (kx — wb). (23)
If ¢ is greater than =
T = (m/eE.k)}, (29

then it is clear from (23) that n, becomes greater
than N. Thus for times as great as this solutions
(21) and (22) break down.

The time 7 is 1/2x times the period of oscillation
of an electron in the trough of the wave. It depends
on the amplitude of the wave and can be made as
long as desired by making E, sufficiently small.
However, for wave of experimental interest one
should check whether = is long or short compared
to times of interest.

We may now calculate the energy picked up by
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the resonant particles. Its value per wavelength is
given by (25).

A
Wm=%mf dmf av
0 res

N 4+ n )XV 4+ v)* — NV?. (25)

After substituting in the values of n, and », given
by (21) and (22), we find that

0 sin® (3w — EV)
Wi = &2 xf N(V)dV{ e
n (2—kaV>_ sin® 3 — kV))s

— Yw — kV)tsin (0 — kV)t]}- (26)
The first term of the integrand of (26) comes from
the term Nv}. The wave generates a motion of the
particles relative to the mean velocity or center of
mass velocity. The kinetic energy of this motion
is what is given by Nv?. This term is always positive.
The last two terms of the integrand come from the
term 2Vv,n,. They give the change in kinetic energy
due to a change in the mean velocity of a stream.
This term is positive for particles traveling at less
than the wave velocity and negative for particles
traveling faster than the wave velocity. Particles
traveling slower than the wave velocity tend to be
accelerated while those traveling faster than the
wave velocity tend to be decelerated.

If the second term of the integrand of (26) is
integrated by parts, one obtains

EEN [erteY 2kEN(V)V . 5y
M Joay dVv @ = kVY sin® [Hw — kV)i]
2712y AT/, /1N
=2 e—ﬁ’)‘ %72——(“/’(? sin® } k AV?
_ e2E§)\ w/k+AV . dV

m sy (@ — kV)
AN'(M)V + N(V)]sin’ [$w — kV)i]

— IANMEVE] sin (@ — kV)t}, @n
where N(w/k) is some value that N(V) takes on
in the interval

@/k = AV) < V < (/k + AV).

It will be approximately N(w/k). The same singu-
larity appears in the integrands on the right and
left sides of (27). Since the singularity cancels when
(27) is substituted in (26), no trouble arises. The
first term on the right-hand side of (27) behaves
like 1/AV. We will assume that 1/AV is sufficiently
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large so that this term can be neglected. For this
approximation to be valid we require that this
term be small compared to the wave energy given
by (18). This is true if

<1 _k dw) 8me’ N(w/k) .

dh) AV sin® kAVt<<1

or roughly if
2:N(w/k)/kE* AVN < 1, (28)
where N is the total number density for the electrons.
For a Maxwell distribution this reduces to
2 2

L= oarv,

exp [—(V*/2V7)].

Here V. is the thermal velocity of an electron.
If w/k is large compared to Vi (w/k = 3V 7 is already
large), AV may be chosen much smaller than w/k
and yet large enough to satisfy (28).

The second and third terms in the integrand on
the right-hand side of (27) cancel the first and third
terms in the integrand in (26) and thus (26) reduces
to (29)

62E1>\ w/lc+A¥" N’(V)V_
m wi-ay (@ — kV)z

sin® (3o — kV) AV, (29)

If again we assume AV is sufficieritly large so that
we can treat it as though it were infinite we can
integrate (29) and we find

W = —(me’Ewt/2mk")N'(w/k). (30)

Taking the time derivative of (30) and equating
it to the negative of the time derivative of the wave
energy we obtain

” res

dW. _ Nd(E})/dt (1 _k @)*
dt ~  8r w dk
_ gz WA I<‘£>
S omie Vs
or
dE) ( _@dw>4m . () ‘
=\ o) e VB

= - Ea) ()

From (30) we find dE,/dt to be given by (30).

dE, rw( kdw) (w)
V=G ar) 2 \)Br

Equation (31) is the damping one obtains by

dt 2 1)
Landau’s formalism.
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GALILEAN INVARIANCE

The treatment of Landau damping that has been
given is nonrelativistic. The rate of damping, thus,
should be invariant under a Galilean transformation.
Both the wave energy W, and the resonant particle
energy depend on the frame of reference. The only
quantity which depends on the frame in expressions
(18) and (28) for W, and W,,, is w. Thus both
these quantities transform like w. The ratio of the
wave energy to the resonant particle energy is in-
dependent of the frame and thus the damping
given by (30) is also.

The Galilean invariance makes clear the resolution
of the following paradox. One often hears it said
that particles which are traveling faster than a
wave tend to give energy to the wave while particles
traveling slower than the wave tend to take up
energy from it. That this is so, is clear from the
fact that only the term in N’ remained when ex-
pression (26) for W .., was integrated. Thus, if there
are more particles moving slower than the wave
than there are particles moving faster than the
wave, there will be a net absorption of energy and
the wave will be damped. However, if this is true
one might say, let me go to a frame which is moving
relative to the rest frame of the electron with a
velocity which is greater than the phase velocity
of the wave. Then in this frame there are more
particles moving faster than the wave than there
are ones moving slower than it. Thus in this frame
the wave should gain energy and grow.

The answer to this paradox is the following. The
wave energy depends on the frame, and is negative
in the moving frame contemplated above. That is,
the electrons have less energy than they would have
if the wave were not present. Thus even though
the wave gains energy from the resonant particles
in this frame, it loses negative energy and hence,
damps out.

TRAPPING

There have been a number of explanations of
Landau’s damping based on the trapping of particles®
in the wave troughs. These usually obtain the damp-
ing to within a numerical factor. Such ecalculations
generally compute the change in a particle’s energy
upon becoming trapped. Then they estimate the
trapping time and take the change in energy divided
by the trapping time as the rate at which the
trapped particles pick up energy.

Such an explanation relies upon a nonlinear effect
to explain a linear phenomenon. No such recourse
should be needed. As we have seen, the phenomenon

LANDAU DAMPING
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Fic. 2. Contribution of different velocities to the absorbed
energy.

is explainable simply in terms of the rate of ex-
change of energy between the wave and those
particles traveling near its phase velocity, and it
appears already in the linearized theory. Since trap-
ping does not appear in the linearized theory it
cannot be the cause of the effect. ;

All particles with velocities near the wave velocity,
both trapped and untrapped, contribute to the
absorption of energy. If one makes a plot of the
integrand appearing in Eq. (29) one gets a curve
like that shown in Fig. 2. This plot shows which
particles or velocities have contributed to the ab-
sorbed energy. It does not show the actual energy
absorbed per velocity interval dV, since that is
given by the integrand in Eq. (26), a much more
complicated function. However, it does give a good
idea of which particles are important. Figure 2 is
a typical resonance curve whose height varies as &
and whose width varies as 1/¢. Most of the absorbed
energy is in the central peak. Up to the time that
the width of the main peak is of the order of k 8V,
where 6V in the velocity interval over which particles
are trapped by the wave,

8V = (2eE,/mk)?, (32)

trapping plays a very small role in the damping
process. The trapping time, or time required for an
electron to perform one oscillation in the trough of
the wave, is given by (33) and is essentially the
time 7 [given by Eq. (24)], at which the linearized
solution breaks down.

t = V2r(m/eEk)?} = V27 (33)

For times greater than r trapping will be dominant
if the wave has not already died out.

We can now see why the estimate based on the
trapping gives the right answer. There is a maximum
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F1c. 3. Energy absorbed vs time.

energy that the resonant particles can absorb if
the wave is maintained; since an equilibrium state
will ultimately be reached. It is roughly the energy
absorbed at the time the linearized solution breaks
down. Thus the energy absorbed vs time will have
the appearance of Fig. 3 (assuming the wave is
maintained). At the time the linear theory breaks
down most of the energy that has been absorbed
by the resonant particles is contained in those
particles which are trapped. Thus the energy of

JOHN DAWSON

the trapped particles roughly gives the saturation
energy which the resonant particles can absorb.
By drawing the straight line I (see Fig. 3), which
goes through the origin and intersects the saturations
energy at { = 7, one obtains a good approximation
to the linearized theory for small times and this is
what the trapped particles calculations give.

If the wave energy is much smaller than the
saturation energy, then the wave will die out long
before trapping becomes important. On the other
hand, if the wave energy is large compared to the
saturation energy trapping will be important. Put
another way, if the Landau damping time is short
compared to the trapping time 7, the linearized
theory gives the correct damping, while if it is
long compared to the trapping time the damping
will be modified and the Landau theory is incorrect.
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